If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2-6x-11=0
a = 13; b = -6; c = -11;
Δ = b2-4ac
Δ = -62-4·13·(-11)
Δ = 608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{608}=\sqrt{16*38}=\sqrt{16}*\sqrt{38}=4\sqrt{38}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-4\sqrt{38}}{2*13}=\frac{6-4\sqrt{38}}{26} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+4\sqrt{38}}{2*13}=\frac{6+4\sqrt{38}}{26} $
| (n^-2/3)=9 | | 9.6x15.4x=-4.3x+26.3 | | 9-2p=p+4 | | 15x^2+5x-14=0 | | 6(2y-1)-5(y+1)=0 | | 3(c−72)=33 | | 3(c−72)=33 | | -4x=7x+4 | | w/7.9-(0.14)=0.89 | | w/7.9-(0.14)=0.89 | | 0.89=w/7.9-(0.14) | | -13=-8+7.5h | | -13=-8+7.5h | | -13=-8+7.5h | | w2-18w+56=0 | | w2-18w+56=0 | | w2-18w+56=0 | | w2-18w+56=0 | | -14q-8+2q=-16q+20 | | -14q-8+2q=-16q+20 | | -14q-8+2q=-16q+20 | | -14q-8+2q=-16q+20 | | -14q-8+2q=-16q+20 | | 2u+4(u+7)=-32 | | 2u+4(u+7)=-32 | | 2u+4(u+7)=-32 | | 3x^2)+14x=21 | | 4(2x-2)+2=8x-8 | | 84=-31+x2 | | x-(0.0105)(x)=25 | | x-(0.0105)(x)=25 | | x+13+x=91 |